
Digital Object Identifier (DOI) 10.1007/s100520100707
Eur. Phys. J. C 21, 133–143 (2001) THE EUROPEAN

PHYSICAL JOURNAL C

Heavy quark induced effective action for gauge fields
in the SU(Nc) ⊗ U(1) model and the low-energy structure
of heavy quark current correlators

S. Groote1, A.A. Pivovarov1,2

1 Institut für Physik der Johannes-Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
2 Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow, Russia

Received: 21 April 2001 / Revised version: 18 May 2001 /
Published online: 29 June 2001 – c© Springer-Verlag / Società Italiana di Fisica 2001

Abstract. We calculate the low-energy limit of heavy quark current correlators within an expansion in
the inverse heavy quark mass. The induced low-energy currents built from the gluon fields corresponding
to the initial heavy quark currents are obtained from an effective action for gauge fields in the one-loop
approximation at the leading order of the 1/m expansion. Explicit formulae for the low-energy spectra of
electromagnetic and tensor heavy quark current correlators are given. Consequences of the appearance of a
nonvanishing spectral density below the two-particle threshold for high precision phenomenology of heavy
quarks are discussed quantitatively.

1 Introduction

Quantum corrections can qualitatively change the ana-
lytic structure of the Green function or the symmetry
properties of a classical field-theoretical system. Qualita-
tively new features compared to the tree-level picture may
emerge already at finite orders of perturbation theory for
Green functions while some effects can only appear as a
result of summing up an infinite number of perturbative
terms. An effect of non-conservation of the Abelian ax-
ial current reveals itself at leading order as a result of
the calculation of an one-loop triangle diagram [1,2] while
spontaneous symmetry breaking or bound state formation
cannot be observed at any finite order of perturbation the-
ory and requires an infinite summation of relevant subsets
of diagrams. For problems related to an investigation of
the symmetry properties of quantum systems, such an in-
finite summation can be readily done by introducing an
effective action for the system and calculating it as a loop-
expansion series. Such an approach reorders the perturba-
tion series with respect to the lines of diagrams related to
external fields and allows one to take into account the en-
tire dependence on external fields exactly within a given
order of the loop expansion. An effective action can be
considered as a generating functional for the vertex (one-
particle irreducible, or proper) Green functions (see e.g.
[3]). The treatment of external fields beyond the finite or-
der of expansion was done in [4]. The efficient method
of calculating the effective action is based on the Legen-
dre transform of the generating functional for connected
Green functions and heavily uses the functional techniques
[5]. One can also use a practical calculation technique by

substituting the shifted fields in the original Lagrangian
of the system [6,7]. The part of the effective action which
is constructed from the constant field is usually called an
effective potential and is used to analyze the fundamen-
tal symmetry properties of the theory beyond the plain
perturbation theory where the effect of the external fields
is resummed to all orders. The expansion leading to the
effective potential is, in fact, an expansion in Planck’s con-
stant �, i.e. the correction accounts for the deflection from
the classical limit. Therefore, new effects which are absent
in the classical approximation may appear within such an
approach. An example for this kind of new quantum ef-
fects is the light-by-light scattering which emerges as a
quantum correction to the photon dynamics due to the
interaction with virtual electrons. In the low-energy limit
it can be seen as a nonlinearity of the equations for the
strong electromagnetic fields in the vacuum. The behav-
ior of the electromagnetic fields with such a correction can
be described by the Euler–Heisenberg Lagrangian [8]. The
generalization to non-Abelian fields is discussed in [9]. The
effective potential is also a powerful tool for investigating
the effects of spontaneous symmetry breaking by quan-
tum corrections [10] and for analyzing the properties of
particle systems at finite temperature and density [11].

A special advantage of using the external field tech-
nique in gauge theories is an explicit gauge invariance of
the effective action that allows one to drastically simplify
the computation and to reduce the number of necessary
diagrams [12]. It is generally believed that in non-Abelian
gauge theories the nonperturbative fluctuations (instan-
tons) [13] create a complex vacuum structure that eventu-
ally explains (or is responsible for) a low-energy spectrum
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of observed particles [14]. The technique of calculating in
external fields was heavily used for the calculation of quan-
tum corrections to the effective action of gauge fields in the
classical instanton background [15]. In practical applica-
tions to QCD the complex vacuum structure could explain
the phase transition from the quark–gluon representation
of Green functions at high energies to the hadron picture
at low energies. While the problem of a full description
of this transition remains to be solved, Wilson’s opera-
tor product expansion, which is one of the key tools for
calculating the correlation functions at short distances, is
used for describing hadronic properties at low energies in
a semiphenomenological way using sum rule techniques
[16]. The external field technique provides a convenient
way for practical calculations within the sum rule method
based on a semiphenomenological account for the vacuum
condensates of local operators [17,18].

In the present paper we calculate the low-energy limit
of heavy quark current correlators within the 1/m expan-
sion, where m is a heavy quark mass. The induced low-
energy currents corresponding to the heavy quark initial
operators are obtained from an effective action for gauge
fields of the SU(Nc)⊗U(1) model in the one-loop approx-
imation at leading order of both the coupling constant
and the 1/m expansion. Our results for the effective ac-
tion for vector and tensor currents are presented in Sect. 2.
Using the external field technique as a convenient frame-
work for practical calculations of the induced currents in
this model, in Sect. 3 we present these induced currents.
In Sect. 4 we show phenomenological applications, and in
Sect. 5 we deal with the consequences encountered for cal-
culating arbitrary moments of the spectral densities of var-
ious correlators.

2 The effective action

While the technique is standard, we are aiming at con-
crete results for further phenomenological applications to
sum rules for the vacuum polarization functions of heavy
quarks. Therefore, we briefly outline the calculation and
the related issues. Further details can be found in [3,19].
The Lagrangian of a heavy fermion field ψ interacting with
a gauge field B of the gauge group SU(Nc)⊗ U(1) reads

L = ψ̄ (iγµ∂µ + γµBµ −m)ψ, (1)

where Bµ = eAµ + gsBµ. Here Aµ is a gauge field of the
U(1) subgroup (photon) with the coupling constant e and
Bµ is a gauge field of the SU(Nc) subgroup (gluon) with
the coupling constant gs. The matrix notation for the non-
Abelian gauge field potentials is used, Bµ = taBaµ, where
ta are generators of the gauge group SU(Nc). A generating
functional W [J ] of connected Green functions is given by
a functional integral with the sources J ,

Z[J ] = exp(iW [J ])

=
∫ [

dψ̄dψ
]
exp

(
i
∫
LJ(x)d4x

)

γ

g

g

g

Fig. 1. Heavy quark loop correction to the electromagnetic
current

=
∫ [

dψ̄dψ
]
exp

(
i
∫ (

ψ̄(iγµ∂µ + γµBµ −m)ψ

+JµBµ
)
d4x

)
, (2)

where the product JµBµ implies a trace with respect to the
representation of SU(Nc) ⊗ U(1). A proper gauge fixing
is implied as well. The effective action Γ [B̄] for the gauge
field is then given by the Legendre transform

Γ [B̄] =W [J ]− JB̄, B̄ =
δW [J ]
δJ

. (3)

It was shown that this procedure is equivalent to the more
direct calculation in external fields (see e.g. [19]). It is also
a generalization of results obtained for constant external
fields [2]. Up to leading order in � the effective action
constructed with a Legendre transform can also be found
through

exp(iΓ [B])
=

∫ [
dψ̄dψ

]
exp

(
i
∫
ψ̄(iγµ∂µ + γµBµ −m)ψd4x

)
= det (iγµ∂µ + γµBµ −m) , (4)

where B is now a classical gauge field (integration over
d4x is implied for expressions of the action). By using the
identity detM = exp(tr(lnM)) for an operator M one
continues with

iΓ [B] = tr[ln (iγµ∂µ + γµBµ −m)]. (5)

2.1 Results for the effective action

A straightforward calculation of the functional determi-
nant gives a correction to the effective low-energy action
of the gauge fields within SU(Nc) ⊗ U(1). We calculate
the leading nontrivial contribution in the 1/m expansion.
The functional determinant in the loop expansion can be
represented by Feynman diagrams. A diagram which gives
a correction to the effective action due to a heavy quark
loop is shown in Fig. 1. Two-gluon transitions are forbid-
den according to a generalization of Farry’s theorem to
non-Abelian theories [20]. We are interested in the behav-
ior of the amplitude associated with the diagram in Fig. 1
at low energies and, therefore, take the limit of a very
heavy quark. Formally the limit m→ ∞ is taken which in
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physical terms means that m is much larger than all mo-
menta of the external legs of the diagram in Fig. 1, namely
the three gluons and the photon. A straightforward calcu-
lation of the diagram presented in Fig. 1 gives the one-loop
result for the correction to the effective action induced by
a heavy quark loop at leading order of the 1/m expansion.
This correction reads

∆ΓQCD =
eg3s dabc

180m4(4π)2

× [
14tr(FGaGbGc)− 5tr(FGa)tr(GbGc)

]
, (6)

where Fµν is a field strength tensor for the U(1) subgroup,
Gµν = taGaµν is the field strength tensor for the SU(Nc)
subgroup, and dabc are the totally symmetric SU(Nc)
structure constants defined by the relation dabc = 2tr({ta,
tb}tc). The trace in (6) is understood as a trace with re-
spect to the Lorentz indices of the fields, i.e. one consid-
ers the field strength tensors of gauge fields as matrices
for which tr(FGa) = FµνGaνµ. This makes the formulae
shorter and more transparent. Before we proceed to the
calculation of the induced current in the next section, we
compare the result with the corresponding expression in
QED.

2.2 Comparison with QED

The effective action within QED corresponding to Fig. 1
with gluons substituted by photons is known as the Euler–
Heisenberg Lagrangian [19],

∆ΓQED =
2α2

45m4

[
(E2 − H2)2 + 7(E · H)2

]
,

α =
e2

4π
. (7)

This expression can be obtained by a direct calculation in
the same way as the result in (6). One can also extract it
from (6) by modifying the gauge group factors and tak-
ing into account the symmetry of the action with respect
to the external gauge fields. We remind the reader that
(6) is only the term linear in the photon field, while the
higher order contributions are not explicitly written down
because they are redundant for our primary purpose of
determining the low-energy structure of the heavy quark
correlators. In the following we give some relations be-
tween the fourth-order monomials of the photon field to
convert the basis of (6) into the traditional QED basis
used in (7). With the definitions for the electric field E
and the magnetic field H,

F 0j = −F0j = −Ej ,
F i0 = −Fi0 = Ei,
F ij = Fij = −εijkHk, (8)

one finds

tr(F 2) = 2(E2 − H2),

tr(F 4) = 2(E2 − H2)2 + 4(E · H)2,

tr(FF̃ ) = 4(E · H),

tr(FF̃F F̃ ) = −1
2
(tr(F 2))2 + tr(F 4)

= 4(E · H)2, (9)

where
F̃µν =

1
2
εµνρσF

ρσ. (10)

Note for further use and convenience that in order to
rewrite the expressions from one form to another one can
use one more relation between the fourth-order monomials
of the electromagnetic field strength tensor Fµν ,

(FF̃ )2 = −2(F 2)2 + 4F 4, (11)

with

FF̃ = FµνF̃µν ,

F 2 = FµνFµν ,

F 4 = FµνFναFαβFβµ. (12)

Therefore the correspondence between (6) and its QED
counterpart in (7) is established.

3 The induced current

An expression for the induced electromagnetic current Jµ
as being an effective electromagnetic current for the low-
energy effective theory describing the interaction of pho-
tons and gluons is given by the derivative of the effective
action with respect to the external Abelian gauge field,

eJµ = −δΓ [B]
δAµ

= −tr
[
ieγµ

1
iγµ′∂µ′ + γµ′Bµ′ −m

]
. (13)

The derivative with respect to Aµ can be replaced by a
derivative with respect to Fµν = ∂µAν − ∂νAµ,

eJµ(x) = −δFµ′ν′

δAµ

δΓ [B]
δFµ′ν′

= −2∂ν δΓ [B]
δFνµ

. (14)

Expressed differently, one can say that after having inte-
grated out the heavy quark field in the functional integral
one obtains the relation

〈jµ〉ψ = 〈ψ̄γµψ〉ψ ≡ Jµ (15)

for the electromagnetic current of the heavy quark.

3.1 Results for the induced vector current

With the explicit expression for the effective action given
in (6) we obtain [21]

Jµ = ∂νOµν , (16)

Oµν = −g3s dabc
90m4(4π)2

[
14(GaGbGc)µν − 5(Ga)µνtr(GbGc)

]
.
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Note that the current conservation ∂µJµ = 0 that inher-
its the original relation ∂µjµ = 0 and is necessary for a
gauge invariant interaction with photons is automatically
guaranteed because the operator Oµν is antisymmetric,
Oµν + Oνµ = 0. Higher order corrections in the coupling
constant α of the U(1) subgroup are omitted. The induced
electromagnetic current in (16) is a correction of order
1/m4 in the inverse heavy quark mass which vanishes in
the limit of an infinitely heavy quark. Corrections in the
inverse heavy quark masses are important for tests of the
standard model at the present level of precision and have
already been discussed in various areas of particle phe-
nomenology [22–24].

3.2 Other types of induced currents

Expressions for the induced currents with quantum num-
bers other than that of the electromagnetic current JPC =
1−− can be obtained in a similar way. A review was re-
cently presented in [25]. The axial current of fermions nat-
urally appears in the standard model as the result of an
axial-vector interaction of fermions withW and Z bosons.
The corresponding induced current can be obtained as a
derivative of the respective effective action with respect
to the Z boson field. The leading order diagram, however,
contains only two external legs and is ultraviolet (UV) di-
vergent. In case of massless fermions, this diagram leads to
the anomalous non-conservation of the axial current; that
also requires a strict definition of the corresponding opera-
tor ψ̄γµγ5ψ within perturbation theory, because its renor-
malization properties are not dictated by the Ward identi-
ties anymore in contrast to the vector current. The leading
corrections to the anomaly of the axial current for mass-
less fermions due to strong interactions were considered in
[26,27] where the implications of the Adler–Bardeen no-
go theorem (non-renormalizability) were discussed also for
dimensional regularization and different definitions of the
axial current at the tree level. Higher order corrections
were analyzed in [28]. Explicit high-order corrections to
the expression for the anomaly depend on the renormal-
ization prescription for the composite operator ψ̄γµγ5ψ
within perturbation theory.

The scalar current ψ̄ψ appears in an interaction vertex
for the Higgs boson and was intensively studied. Many
terms of the heavy mass expansion for the scalar current
were derived in [29]. The decay H → γγ is described by
the effective interaction

∆LH = gS(m,αs)αHFF, (17)

with the effective local vertex gS(m,αs) depending on the
quark mass and the coupling constants (note the differ-
ence to gs, S stands for the scalar current). At the leading
order the formfactor gS(m,αs) is given by the correspond-
ing one-loop diagram with two external photons. Here H
is an interpolating field for the Higgs boson. The decay of
the Higgs boson into two photons is calculated up to high
orders of perturbation theory [30]. An application of the
effective potential technique to the analysis of the corre-
lators of the scalar gluonic currents which emerge in the

decay of the Higgs boson into hadrons was considered in
[31]. The mass expansion for the pseudoscalar current was
also considered in some detail in relation to the intrinsic
charm flavor of pseudoscalar light bosons [32].

3.3 Results for the induced tensor current

For completeness we discuss here the calculation of the
induced (antisymmetric) tensor current interacting with
photons in the context of the effective action. We consider
a tensor current of the form

jµν = ψ̄σµνψ, σµν =
i
2
[γµ, γν ] (18)

and calculate its low-energy limit induced by a heavy
quark loop. The properties of this current are rather sim-
ilar to those of the electromagnetic current. Note that the
classical vector mesons (ρ, ω, φ) interact with this current
and can be produced by it. We introduce an interaction

∆LT = gT ψ̄σµνψFµν (19)

in the Lagrangian of heavy quarks and readily find the
effective action for gauge fields induced by such a vertex.
The low-energy limit at the one-loop order reads

ΓT =
−gT g3s dabc
6m3(4π)2

(
2tr(FGaGbGc)− tr(FGa)tr(GbGc)

)
,

(20)
with the same notations as in (6). According to the form
of the effective interaction in (19) the induced current Jµν
is given by a derivative

gTJ
µν = − δΓT

δFµν
, (21)

and explicitly reads

Jµν =
−g3s dabc
6m3(4π)2

(
2(GaGbGc)µν − (Ga)µνtr(GbGc)

)
.

(22)
Note the lower power of the heavy quark mass in (22)
as compared to (16). The induced current in (22) is of
less phenomenological interest than the vector current,
because there is no direct source for the tensor current
in nature in contrast to the vector current which appears
in e+e− annihilations. However, the calculation is simple
and allows one to demonstrate some essential features of
the technique. The technique of calculating in external
fields is well developed. After integration over the heavy
field ψ we obtain

Jµν ≡ 〈jµν〉ψ = tr(σµν iS(0,m;A)), (23)

where the propagator of a heavy quark in the external
field A is given by

i〈Tψ(x)ψ̄(0)〉A = S(x,m;A), (24)

and where by definition
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S(0,m;A) =
∫

dDp
(2π)D

S(p,m;A); (25)

S(p,m;A) is a propagator in momentum space. The prop-
agator S(p,m;A) can be expanded in powers of the exter-
nal field A and its derivatives. The formal operator ex-
pression reads

S(p,m;A) = S(p,m) + S(p,m)γµAµS(p,m) + . . . , (26)

where in momentum space

S(p,m) ≡ S(p,m; 0) = 1
m− γµpµ (27)

is a free field propagator. The convenient way for the cal-
culation is to use the Fock–Schwinger (fixed-point) gauge
for the external field,

xµAµ(x) = 0. (28)

In this gauge the gauge field potential Aµ(x) can be ex-
pressed through the field strength tensor Gµν . For small
values of x one has

Aµ(x) =
1
2
xαGαµ + . . . (29)

Substituting this expression in (26), any factor x results
in a derivative in p, and one obtains

Aµ(p) =
−i
2
Gαµ∂

α =
i
2
Gµα∂

α. (30)

The piece of the expansion in (26) relevant to the tensor
current calculation at the leading order reads

I(p,m;G) = S(p,m)γα
i
2
Gαα′∂α

′
S(p,m)γβ (31)

× i
2
Gββ′∂β

′
S(p,m)γγ

i
2
Gγγ′∂γ

′
S(p,m).

All derivatives act to the right to all propagators that
follow. Integrating this expression over p one obtains

I(m;G) =
∫

dDp
(2π)D

I(p,m;G) (32)

and
〈jµν〉ψ = tr(σµν iI(m;G)). (33)

The integral in (32) converges and the calculation can be
performed in four-dimensional space-time, D = 4. The
calculation of consecutive derivatives on the right hand
side of (31) is a bit cumbersome. A simplification can be
obtained by applying the integration-by-parts technique
to (32). This allows one to transfer the left derivative to
the left propagator in (31) (the surface term vanishes),
resulting in an equivalent expression for the integrand,

I(p,m;G) = −(∂α′
S(p,m))γα

i
2
Gαα′S(p,m)γβ

× i
2
Gββ′∂β

′
S(p,m)γγ

i
2
Gγγ′∂γ

′
S(p,m). (34)

The derivatives are readily calculable using

∂αS(p,m) = S(p,m)γαS(p,m), (35)

which is just a Ward identity. This finally gives (S =
S(p,m))

I(p,m;G)

= − i
2
Gαα′

i
2
Gββ′

i
2
Gγγ′Sγα

′
SγαSγβ (36)

×S(γβ′
SγγSγγ

′
+ γγSγβ

′
Sγγ

′
+ γγSγγ

′
Sγβ

′
)S.

Computing the trace and the integrals, we obtain (22).
The only integral necessary here has the form (after Wick
rotation into the Euclidean domain)

∫
p2nd4p

(p2 +m2)7
= π2B(n+ 2, 5− n)(m2)n−5, (37)

where B(x, y) is Euler’s beta function. All angular inte-
grations reduce to an averaging. With the result given by
(22) we confirm the result of [25] which we were not aware
of while writing the paper. For comparison we note the re-
lation 4tr(tatbtc) = dabc + ifabc. Note that for the gauge
group SU(2) we have dabc = 0 which confirms the result
of [25] found by a direct calculation using a symmetry
transformation specific for SU(2).

4 Phenomenological applications

High precision tests of the standard model remain one of
the main topics of particle phenomenology [33]. The recent
observation of a possible signal from the Higgs boson may
complete the experimentally confirmed list of the standard
model particles [34]. Because experimental data are be-
coming more and more accurate, the determination of nu-
merical values of the parameters of the standard model La-
grangian will require more accurate theoretical formulae.
Recently an essential development in high-order perturba-
tion theory calculations has been observed. A remarkable
progress has been made in the heavy quark physics where
a number of new physical effects have been described the-
oretically with high precision. The cross section of top–
antitop production near the threshold has been calculated
at the next-to-next-to-leading order of an expansion in the
strong coupling constant and velocity of a heavy quark
with an exact account for the Coulomb interaction (as a
review, see [35,36]). This theoretical breakthrough allows
for the best determination of a numerical value of the top
quark mass from the experimental data. The method of
Coulomb resummation resides in a nonrelativistic approx-
imation for the Green function of the quark–antiquark sys-
tem near the threshold and has been successfully used for
the heavy quark mass determination within sum rule tech-
niques [37–39]. Being applied to quarkonium systems this
method is considered to give the best estimates for the
heavy quark mass parameters [40–43]. Technically an en-
hancement of near-threshold contributions to sum rules
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is achieved by considering integrals of the spectral den-
sity of the heavy quark production with weight functions
which suppress the high-energy tail of the spectrum. The
integrals with weight functions 1/sn for different positive
integer n, s = E2, where E is the total energy of the
quark–antiquark system, are called moments of the spec-
tral density and are most often used in the sum rule analy-
sis [44]. The interest in the precision determination of the
c quark mass is especially high, because this parameter
introduces the largest uncertainty to the theoretical cal-
culation of the running electromagnetic coupling constant
atMZ which is one of the key quantities for the constraints
to the Higgs boson mass [45]. We stress that in the cor-
responding determination of the running electromagnetic
coupling constant at MZ based on direct integration of
the experimental data over the threshold region, the sen-
sitivity of the results to the c quark mass is much weaker
[46].

For phenomenological applications of our results one
therefore has to compute the two-point correlation func-
tions of the induced currents. In the following we show
that there is a strong constraint on the order n of the mo-
ment that can be used in heavy quark sum rules. Because
of the contribution of low-energy gluons, only the first few
moments formally exist if the theoretical expressions for
the correlators include the O(α3

s ) order of perturbation
theory.

4.1 The spectrum
for the induced vector current correlator

First we discuss the case of the vector current where the
data are obtained from e+e− annihilation experiments and
are rather precise. The basic quantity for the analysis of
a vector current jµ = ψ̄γµψ of a heavy fermion ψ within
sum rules is the vacuum polarization function

12π2i
∫

〈Tjµ(x)jν(0)〉eiqxd4x = (qµqν − gµνq2)Π(q2).
(38)

With the spectral density ρ(s) defined by the relation

ρ(s) =
1
2πi

(Π(s+ i0)−Π(s− i0)), s > 0, (39)

the dispersion representation

Π(q2) =
∫
ρ(s)ds
s− q2 (40)

holds. A necessary regularization and subtraction is as-
sumed in (40). The normalization of the vacuum polariza-
tion function Π(q2) in (38) is chosen so that one obtains
the high-energy limit lims→∞ ρ(s) = 1 for a lepton. For
the quark in the fundamental representation of the gauge
group SU(Nc) the high-energy limit of the spectral den-
sity reads ρ(∞) = Nc. The integral in (40) runs over the
whole spectrum of the correlator in (38) or over the whole
support of the spectral density ρ(s) in (39).

a b

Fig. 2a,b. Induced massless correlator diagrams

A correlator of the induced vector current Jµ has the
general form

〈TJµ(x)Jν(0)〉 = −∂α∂β〈TOµα(x)Oνβ(0)〉, (41)

where an explicit expression of the current as a derivative
of the antisymmetric operator Oµν has been employed.
The resulting correlator 〈TOµα(x)Oνβ(0)〉 in (41) con-
tains only gluonic operators. Such correlators were con-
sidered previously in the framework of perturbation the-
ory [47,48]. In leading order of perturbation theory the
correlator in (41) has the topological structure of a sunset
diagram, as is shown in Fig. 2a. Technically, a convenient
procedure of computing the sunset-type diagrams is to
work in configuration space [49]. We find

〈TJµ(x)Jν(0)〉
=

−34dabcdabc
2025π4m8

(αs

π

)3 (
∂µ∂ν − gµν∂2) 1

x12 . (42)

A Fourier transform of the correlator in (42) gives the
vacuum polarization function in momentum space, which
reads

12π2i
∫

〈TJµ(x)Jν(0)〉eiqxd4x

= (qµqν − gµνq2)Π(q2), (43)

where at small q2 (q2 � m2)

Π(q2)|q2≈0 = Cg

(
q2

4m2

)4

ln
(
µ2

−q2
)
,

Cg =
17dabcdabc
243000

(αs

π

)3
. (44)

For QCD with color group SU(3) one has dabcdabc = 40/3.
The spectral density of the vacuum polarization function
Π(q2) in (43) is given at small values for s by

ρ(s)|s≈0 = Cg
( s

4m2

)4
. (45)

Note that the spectral density given in (45) can be found
without an explicit calculation of the Fourier transform of
the correlator in (43). Instead of computing the Fourier
transform one can use a spectral decomposition (disper-
sion representation) in configuration space which was
heavily employed for the analysis of sunset diagrams in
[49]. In this particular instance the spectral representa-
tion of the correlator in configuration space reads

i
x12 =

π2

28Γ (6)Γ (5)

∫ ∞
0
s4D(x2, s)ds, (46)
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with D(x2, s) being the propagator of a scalar particle of
mass s1/2,

D(x2,m2) =
im

√−x2K1(m
√−x2)

4π2(−x2)
, (47)

where K1(z) is the McDonald function (a modified Bessel
function of the third kind; see e.g. [50]). Γ (z) is Euler’s
gamma function.

An asymptotic behavior of the spectral density of the
corresponding contribution for large energies (where the
limit of massless quarks can be used) enters the expression
for the ratio R(s) of the e+e− annihilation into hadrons
and has been known since long ago [51–53]. This term is
usually called a light-by-light (lbl) contribution and reads

Rlbl(s) =
(αs

π

)3 dabcdabc
1024

(
176
3

− 128ζ(3)
)
. (48)

Here ζ(z) is the Riemann ζ function with ζ(3) = 1.20206
. . . The contribution to the spectral density given in (48)
is negative, while our result given in (45) is positive as it
should be for the spectral density of the electromagnetic
current as a Hermitean operator.

4.2 The spectrum
for the induced tensor current correlator

The results for the correlator of the tensor current given in
(22) are slightly more complicated. The correlator reads

12π2i
∫

〈TJµν(x)Jαβ(0)〉eiqxd4x

= (gµαgνβ − gµβgνα)Πg(q2) (49)

+(gµαqνqβ − gµβqνqα − gναqµqβ + gνβqµqα)Πq(q2),
where two scalar amplitudes are possible now. With the
explicit expressions for the induced tensor current Jµν in
(22) one finds

Πg(q2) = −q
2

2
Πq(q2) (50)

=
dabcdabc
3240

(αs

π

)3 −q2
4

(
q2

4m2

)3

ln
(
µ2

−q2
)
.

The physical content of the amplitudesΠg(q2) and Πq(q2)
is related to contributions of the states with JPC = 1−−
and JPC = 1+−, respectively. Note that the sum rule anal-
ysis for the mesons with quantum numbers JPC = 1+−
has been done in [54] with quark interpolating currents.
Based on the present results we also see a possibility to
use gluonic currents as the interpolating operators for
such mesons. The validity of such a description depends
strongly on the strength of the interaction of the meson
in question with the corresponding interpolating operator
which is difficult to estimate independently.

Note that there are only two independent gluonic op-
erators available to construct the induced currents under

consideration. The electromagnetic current is given by a
derivative of a special linear combination of these oper-
ators while the tensor current is given by a linear com-
bination of the operators themselves. There is one more
current relevant to the situation. It originates from the
Gordon decomposition of the electromagnetic current (see
e.g. [19])

2mψ̄γµψ = ∂ν(ψ̄σµνψ) + ψ̄i
↔
Dµψ,

↔
D=

→
D −

←
D . (51)

This relation holds for the induced currents as well. The
left hand side and the right hand side of (51) have differ-
ent parity as for the number of Dirac γ-matrices between
spinor fields which is reflected in an additional factor m
at the left hand side of (51). In the massless limit these
types of currents are alien and can never mix. At the level
of induced currents the Dirac structure of the initial heavy
quark currents is reflected in different degrees of suppres-
sion by the heavy quark mass m.

4.3 The spectrum for a mixed current correlator

Having both vector and tensor induced currents at hand,
one can study a mixed correlator of the form

12π2i
∫

〈TJµ(x)Jαβ(0)〉eiqxd4x

= i(gµαqβ − gµβqα)ΠM (q2), (52)

with a single scalar amplitude ΠM (q2). Such mixed cor-
relators are useful in sum rule applications [55]. One finds

ΠM (q2) =
dabcdabc
8100

(αs

π

)3 −q2
4m

(
q2

4m2

)3

ln
(
µ2

−q2
)
.

(53)
The physical content of the amplitude ΠM (q2) is given by
the JPC = 1−− resonances, i.e. by the Υ meson family
in case of b quarks for the original currents and by the ρ
meson family in case of induced currents at low energies.

5 Moments of the spectral density

As mentioned above, the moments of the spectral density
ρ(s) of the form

Mn =
∫
ρ(s)ds
sn+1 (54)

are usually studied within the sum rule method for heavy
quarks [44]. These moments are related to the derivatives
of the vacuum polarization function Π(q2) at the origin,

Mn =
1
n!

(
d
dq2

)n
Π(q2)

∣∣∣∣
q2=0

. (55)

Such moments are chosen in order to suppress the high-
energy part of the spectral density ρ(s) which is not mea-
sured accurately in the experiment. Within the sum rule
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method one assumes that the moments in (54) can be
calculated for any n or, equivalently, that the derivatives
in (55) exist for any n. The existence of these moments
seems to be obvious, because one implicitly assumes that
the spectral density ρ(s) of the current correlator of the
heavy quarks with massm vanishes below the two-particle
threshold at s = 4m2. This implicit assumption means
that the vacuum polarization function Π(q2) of heavy
quarks is analytic in the whole complex plane of q2, ex-
cept for the cut along the positive real axis starting from
4m2. This assumption about the analytic properties of
the vacuum polarization function Π(q2) is known to be
wrong if a resummation of Coulomb effects to all orders
of perturbation theory is performed: as a result of such a
resummation the Coulomb bound states appear below the
perturbation theory threshold at s = 4m2.

5.1 Infrared singular behavior of the moments

The qualitatively new feature of the effective currents
given in (16) and (22) is that they are expressed through
massless fields. Therefore, the spectrum of the two-point
correlators of these currents starts at zero energy (at least
for finite orders of perturbation theory). This feature dras-
tically changes the analytic structure of the two-point
correlators of these currents and, in particular, their in-
frared (IR) or small q2 behavior because of the branch-
ing point (cut) singularity of Π(q2) at the origin q2 = 0.
This new feature of having a nonvanishing spectrum be-
low the formal tree-level two-particle threshold appear-
ing at the O(α3

s ) order of perturbation theory for induced
current correlators has important phenomenological con-
sequences. Indeed, such a change of the analytic structure
of induced current correlators strongly affects the theoret-
ical expressions for some observables usually employed in
heavy quark physics for the precision determination of the
parameters of heavy quarks and their interactions.

Because of the low-energy gluon contributions, the
large n moments of the spectral density in (54) related
to derivatives of the correlator at the origin do not exist
and cannot be directly used for phenomenological analy-
ses. Caused by the factor (s/4m2)4 in (54), the moments
become IR singular for n ≥ 4 in case of the induced vec-
tor current. This can already be seen by looking at the
factor 1/m4 in the induced vector current in (16). For
the induced tensor current the corresponding moments
start to diverge earlier because of a weaker suppression
by the heavy quark mass; the corresponding factor in (22)
is 1/m3 instead of 1/m4. Therefore, in this case the mo-
ments become IR singular already for n ≥ 3. Note that
in original applications of sum rules quite large ns were
used. For instance, the sum rule analysis of charmonium
(cc̄ system) is usually performed at n ∼ 3÷ 7. These mo-
ments were used for extracting the numerical value of the
gluon condensate from sum rules [44,56]. In the precision
analysis of the bb̄ system the contribution of the gluon con-
densate is relatively smaller because the b quark is heavier
than the c quark. Thus, the gluon condensate contribution
is stronger suppressed by the heavy quark mass as com-

pared to the perturbation theory contribution and higher
order moments were used in the analysis of the bb̄ sys-
tem. In different papers on this subject moments in the
range n ∼ 3÷20 were considered. In view of our result on
the low-energy behavior of the spectral density, one has
either to limit the accuracy of theoretical calculations for
the standard moments to the O(α2

s ) order of perturba-
tion theory, which seems insufficient for a high precision
analysis of quarkonium systems (especially for bb̄ with the
Coulomb resummation performed to all orders) or to use
only a few first moments. For small values of n, however,
the high-energy contribution, which is not known exper-
imentally with a reasonable precision, is not sufficiently
suppressed and introduces a large quantitative uncertainty
into the sum rules for the moments. An analysis based on
finite energy sum rules is free from such a problem and
can be used in phenomenological applications [57].

Note in passing that there is no low-energy gluon con-
tribution (and therefore no low-energy divergence prob-
lem or a non-analyticity at the origin) for correlators of
the currents containing only one heavy quark with mass
m. The spectrum of such correlators starts at m2 and
there are no massless intermediate states contributing to
the correlator in the perturbation theory of strong inter-
actions (see e.g. [58]). The theoretical expressions for such
correlators can be used for high precision tests of theoret-
ical predictions when the accuracy of experimental data
in corresponding channels will improve in the future.

5.2 An infrared safe definition for the moments

The infinite-integration sum rules with large n can be re-
tained at high orders of perturbation theory if an appro-
priate cutoff at small energies is introduced. This can be
readily achieved by calculating the moments (or deriva-
tives) at some Euclidean point q2 = −∆ [59]. Indeed, for
the regularized moments

Mn(∆) =
1
n!

(
d
dq2

)n
Π(q2)

∣∣∣∣
q2=−∆

=
∫ ∞

0

ρ(s)ds
(s+∆)n+1 (56)

there is no divergence at small s. However, the regulariza-
tion parameter ∆ cannot be arbitrary small. The reason
is that the resulting correlator of gluonic currents in (41)
is essentially normalized at µ2 = ∆ when radiative cor-
rections are taken into account. The relevant diagrams
are shown in Fig. 2b. The radiative corrections are known
to be large and, therefore, ∆ should be larger than the
expected IR scale in the quark channels [47]. This obser-
vation makes the phenomenological analysis based on the
regularized sum rules in (56) unprecise even for reasonably
large values of n because the continuum contribution to
moments is not sufficiently suppressed for large values of
∆. The suppression of the high-energy tail of the spectral
density can be enhanced by constructing a more special
kind of moments which exploit the explicit behavior of the
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spectral density at low energy. The IR safe moments with
a more efficient suppression of the high-energy tail for the
induced vector current can be chosen in the form

M̃n(∆) =
∫ ∞

0

ρ(s)ds
s3(s+∆)n+1 . (57)

While the formal statement about the analytic proper-
ties of heavy quark correlators at the origin determined by
the massless intermediate states is rather straightforward,
the main issue is whether the low-energy gluon contri-
bution is essential for phenomenology. In this respect we
would like to remind the reader that Coulomb poles which
are essential for the analysis of the Υ resonance and the bb̄
production near threshold give contributions to moments
which are formally of the O(α3

s ) order (for the value of the
Coulombic wave function at the origin see e.g. [40]). This
order coincides with the order of corrections considered
here (see (44)). The theoretical expressions for the cor-
relators in the scalar channel where the below-threshold
corrections start at the O(α2

s ) order are more sensitive
to these special below-threshold contributions. However,
data in the scalar channel are considerably worse than
those in the vector channel, and there is no possibility of
a high precision analysis in the scalar channel at present.

We give some quantitative estimates of relative contri-
butions of low-energy gluon states to the IR safe moments
given in (56). For the contribution of the low-energy gluon
term to the regularized moments we find

Mleg
n (∆) =

1
n!

(
d
dq2

)n
Πleg(q2)

∣∣∣∣
q2=−∆

=
Cg

(4m2)4
24Γ (n− 4)
n!∆n−4 . (58)

The derivatives can be explicitly calculated for n ≥ 5 with
the relation(

d
dq2

)n
(q2)4 ln

(
µ2

−q2
)
=

24Γ (n− 4)
(−q2)n−4 . (59)

For smaller n there is a dependence on the UV cutoff
µ2; we consider this case later. Note that the contribu-
tion of low-energy gluons into the derivatives at the point
q2 = −∆ is calculated by direct differentiation of the ex-
pression Πleg(q2) for the low-energy limit of the correlator
Π(q2). The same result (in a pure mathematical sense) is
obtained with the dispersion relation

1
n!

(
d
dq2

)n
Πleg(q2)

∣∣∣∣
q2=−∆

=
∫ ∞

0

ρleg(s)ds
(s+∆)n+1 , (60)

where ρleg(s) is the spectral density given in (45).
The leading order moments for the contribution from

the two-particle threshold read

M0
n(∆) =

1
n!

(
d
dq2

)n
Π0(q2)

∣∣∣∣
q2=−∆

=
∫ ∞

4m2

ρ0(s)ds
(s+∆)n+1

Table 1. The ratios of the moments from different squared
energy regions for the bottom quark (mb = 4.8GeV) with
ER = 1GeV and two different values for ∆

∆ = 1GeV2 ∆ = 2GeV2

M(a)
n /M(c)

n M(b)
n /M(c)

n M(a)
n /M(c)

n M(b)
n /M(c)

n

n = 5 0.000 0.854 0.000 0.841
n = 6 0.002 1.151 0.001 1.133
n = 7 0.085 1.507 0.011 1.481
n = 8 4.173 1.932 0.280 1.897
n = 9 239.3 2.439 8.089 2.392

=
4m2Nc

(4m2 +∆)n+1

Γ (5/2)Γ (n)
2Γ (n+ 5/2)

[
(2n+ 3)2F1

×
(
3/2, n+ 1;n+ 3/2;

∆

4m2 +∆

)

−2F1

(
5/2, n+ 1;n+ 5/2;

∆

4m2 +∆

) ]
, (61)

with

ρ0(s) = Nc

√
1− 4m2

s

(
1 +

2m2

s

)
. (62)

Here 2F1(. . .) is a hypergeometric function. For order-of-
magnitude estimates we put ∆ = 0 in these regular mo-
ments, which is a good approximation and allows for hav-
ing a simple analytical formula, given by

M0
n(0) =

Nc
(4m2)n

Γ (n)Γ (5/2)
Γ (n+ 5/2)

(n+ 1). (63)

For αs = 0.3, m = mb = 4.8GeV and ∆ = 1GeV2 we find
that the low-energy gluon term in (58) is larger than the
standard leading order term in (61) for n > 7. Note that
αs should be normalized at a low scale, and our choice
corresponds to the normalization at the scale of the τ lep-
ton mass, Mτ = 1.777GeV. Therefore, for the bb̄ system,
i.e. for the analysis of Υ resonances the dependence on
the cutoff ∆ is numerically essential for moments at large
n > 7 and for ∆ as large as ∆ = 1÷ 2GeV2, which is still
small according to the estimates of radiative corrections
in gluonic channels.

In the case of the c quark the contribution of low-
energy gluons has no chance to become large because other
corrections (like the gluon condensate) become more im-
portant for large n. Therefore, the low-energy gluon term
is numerically negligible in the range of values n < 7 ÷ 8
which can be taken in order that the nonperturbative
expansion within the operator product expansion is still
valid for the charm quark current correlator. In this range
for n the correction due to the low-energy gluon term is
not essential for the cc̄ system, i.e. for analyzing the J/ψ
resonances.

The above crude estimate shows that the contribution
of the low-energy gluons is large for values of parameters
usually taken in the b quark physics analysis and should
therefore be taken into account. In Table 1 we give a more
detailed quantitative analysis in numerical form. We see
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that the moments are given by the integral over the spec-
trum for the whole range (0,∞). We represent the integral
as a sum of three pieces. The first one gives the integral
from s = 0 to s = 4m2, where we use ρleg(s) as a spectral
density (note the bold extrapolation to energies as large
as 2m), the second is an integral over the resonance region
from s = 4m2 to s = (2m + ER)2 where ER is of order
1GeV for the bb̄ system, and the last one is the contin-
uum contribution from s = (2m+ ER)2 to s = ∞. So we
consider

M(a)
n =

∫ 4m2

0

ρleg(s)ds
(s+∆)n+1 ,

M(b)
n =

∫ (2m+ER)2

4m2

ρ0(s)ds
(s+∆)n+1 ,

M(c)
n =

∫ ∞
(2m+ER)2

ρ0(s)ds
(s+∆)n+1 . (64)

It is convenient to normalize the first two contributions
M(a)
n and M(b)

n to the continuum contribution M(c)
n . The

result for the choice ∆ = 1GeV2 is shown in the sec-
ond and third column in Table 1. It is apparent that for
n = 5, 6 the contribution of the resonance region is about
equal to the contribution of the continuum, a fact which is
necessary for a precision calculation of experimental mo-
ments. For larger values of n, in the range of n > 7, the res-
onance region dominates. However, in this region the con-
tribution of the low-energy gluon term is large and com-
parable with the resonance contribution. For even larger n
the contribution of the low-energy gluon term is very big.
The situation is softer for ∆ = 2GeV2, as shown in the
fourth and fifth column in Table 1. Note that the contribu-
tion of the gluon condensate for the bb̄ system is negligible
up to high values, n < 20. Thus, the high-order derivatives
at q2 = −∆ are saturated by the closest singularity (the
cut from the origin) and this singularity becomes dom-
inant for large values of n despite the strong numerical
suppression by α3

s and the small numerical factor given
by Cg in (45).

Note that the inclusion of such a diagram with a below-
threshold cut requires an accurate interpretation of the
data. Indeed, if moments are formally calculated as deriva-
tives, their relation to the spectrum is not explicit. As we
have seen, the diagram leading to the low-energy gluon
term gives a large contribution to the correlator, which
cannot be neglected. As far as a comparison with specific
data is concerned it is clear that the near-origin contribu-
tions are accounted for by the effective low-energy theory
and should be subtracted properly from the b quark pro-
duction. Thereby, the correct correspondence of relevant
data to the theoretical spectrum can be restored, i.e. the
theoretical moments for a specific set of data can be prop-
erly adjusted by specifying the diagrams included. Our
analysis shows that this careful procedure of comparison
is not an academic question but a practical necessity at
the present level of precision in the bb̄ production. For the
modified moments M̃n(∆) in (57) the picture is qualita-
tively the same with some difference as for the range of ∆
and n where the soft gluon corrections are important.

As a concluding remark, let us note that one can defi-
nitely introduce observables as integrals starting from 4m2

or some other given point sthr,∫ ∞
sthr

ρ(s)ds
sn+1 . (65)

These moments are suitable observables for sufficiently
large values of sthr, but they are not related to deriva-
tives of the polarization function at the origin. Instead,
they are related to a IR modified correlator of the form

ΠIR(q2) = Π(q2)−
∫ sthr

0

ρ(s)ds
s− q2 , (66)

which is analytic at the origin. For small s the spectral
density ρ(s) in (66) is well approximated by the low-energy
gluon spectral density ρleg(s). This observation on the an-
alytic structure of the correlator at low energies is impor-
tant for a nonperturbative calculation of the derivatives
of the polarization function at the origin (for instance, in
a future computation on the lattice with dynamic quarks)
which can be used for a comparison with experimental
data on the bb̄ production. Note that in a sense the IR
subtraction in (66) is equivalent to a redefinition of the
heavy quark current: the operator jµ

bb̄
relevant to the va-

lence bottom quark pair production should not contain
the spectrum below some IR cutoff, i.e.

jµ
bb̄
= b̄γµb− Jµ. (67)

The precise meaning of this expression is explained in (66).

6 Conclusions

We have presented explicit low-energy expressions for the
induced currents of heavy quarks. The induced currents
are expressed through the gluon operators generated by a
virtual heavy quark loop. We have considered the electro-
magnetic current and the tensor current closely related to
it. Heavy quark loop induced corrections to the correlators
at low energies (below the formal two-particle threshold)
first appear at O(α3

s ) order of perturbation theory and are
given by the 1/m4 term of the mass expansion in case of
the electromagnetic current and by the 1/m3 term in case
of the tensor current. The spectra of the correlators of such
induced currents start at zero energy. This fact makes im-
possible the standard analysis of the moment sum rules
related to derivatives of the polarization function at the
origin at O(α3

s ) order of perturbation theory for n ≥ 4 in
case of the electromagnetic current and for n ≥ 3 in case
of the tensor current. The contribution of the low-energy
gluons is numerically significant for b quarks and should
properly be taken into account for the high precision anal-
ysis of bb̄ production.
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M. Davier, A. Höcker, Phys. Lett. B 435, 427 (1998); S.
Groote, J.G. Körner, K. Schilcher, N.F. Nasrallah, Phys.
Lett. B 440, 375 (1998)

47. A.L. Kataev, N.V. Krasnikov, A.A. Pivovarov, Phys. Lett.
B 107, 115 (1981); Nucl. Phys. B 198, 508 (1982), Erra-
tum, ibid. B 490, 505 (1997); A.A. Pivovarov, Yad. Fiz.
63, 1646 (2000)

48. T. Inami, T. Kubota, Y. Okada, Z. Phys. C 18, 69 (1983)
49. S. Groote, J.G. Körner, A.A. Pivovarov, Phys. Lett. B 443,

269 (1998); Nucl. Phys. B 542, 515 (1999); Eur. Phys. J.
C 11, 279 (1999); S. Narison, A.A. Pivovarov, Phys. Lett.
B 327, 341 (1994)

50. G.N. Watson, Theory of Bessel functions (Cambridge
Univ. Press, Cambridge 1944)

51. S.G. Gorishnii, A.L. Kataev, S.A. Larin, Phys. Lett. B
259, 144 (1991)

52. K.G. Chetyrkin, Phys. Lett. B 391, 402 (1997)
53. L.R. Surguladze, M.A. Samuel, Phys. Rev. Lett. 66, 560

(1991), Erratum ibid. 66, 2416 (1991)
54. A.A. Ovchinnikov, A.A. Pivovarov, Nuovo Cim. A 90, 73

(1985); Sov. J. Nucl. Phys. 43, 1006 (1986); Yad. Fiz. 43,
1564 (1986)

55. V.A. Novikov, M.A. Shifman, A.I. Vainshtein, M.B.
Voloshin, V.I. Zakharov, Nucl. Phys. B 237, 525 (1984)

56. S.N. Nikolaev, A.V. Radyushkin, Phys. Lett. B 124, 243
(1983)

57. N.V. Krasnikov, A.A. Pivovarov, Phys. Lett. B 112, 397
(1982); N.V. Krasnikov, A.A. Pivovarov, A.N. Tavkhe-
lidze, Z. Phys. C 19, 301 (1983)

58. S. Groote, J.G. Körner, A.A. Pivovarov, Analytical calcu-
lation of heavy baryon correlators in NLO of perturbative
QCD, to be published in the Proceedings of 7th Interna-
tional Workshop on Advanced Computing and Analysis
Techniques in Physics Research (ACAT 2000), Batavia,
Illinois, 16–20 October 2000, Report No. MZ-TH/00-41
[hep-ph/0009218]; S. Groote, J.G. Körner, A.A. Pivovarov,
Phys. Rev. D 61, 071501 (2000); A.A. Pivovarov, High or-
der perturbative calculations for heavy quarks near thresh-
old, Report No. MZ-TH/00-40 [hep-ph/0009107]

59. L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rept. 127,
1 (1985)


